|   [1] 董秀秀, 王宇, 沈玉栋, 等. 基于新型纳米材料的电化学免疫传感器及其在食品安全检测中的应用进展[J]. 中国食品学报, 2015, 15(4):136-146. 
DONG X X, WANG Y, SHEN Y D, et al. Nano material based novel electrochemical immunosensor and its application in the field of food safety[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(4):136-146. (in Chinese) 
[2] 刘继超, 姜铁民, 陈历俊, 等. 电化学免疫传感器在食品安全检测中的研究进展[J]. 中国食品添加剂, 2011(1):216-222. 
LIU J C, JIANG T M, CHEN L J, et al. Research advance study of electrochemical immunosensor and its application in food safety[J]. China Food Additives, 2011(1):216-222. (in Chinese) 
[3] 甘翠芬, 何祖宇, 孙子洪, 等. 新型碳纳米材料在电化学免疫传感器的应用[J]. 广东化工, 2014, 41(15):109-110, 136. 
GAN C F, HE Z Y, SUN Z H, et al. Review on the applications of novel carbon nanomaterials in electrochemical immunosensor[J]. Guangdong Chemical Industry, 2014, 41(15):109-110, 136. (in Chinese) 
[4] 鲁丁强, 庞广昌. 电化学纳米免疫传感器在食品安全检测中的应用展望[J]. 食品科学, 2014, 35(8):6-10. 
LU D Q, PANG G C. Recent development and application of electrochemical nanometer immunosensors in food detection[J]. Food Science, 2014, 35(8):6-10. (in Chinese) 
[5] 申玉坦, 蔡博莹. 新型碳纳米材料在电化学中的应用[J]. 化工管理, 2015(34):121. 
SHEN Y T, CAI B Y. Application of new carbon nanomaterials in electrochemistry[J]. Chemical Enterprise Management, 2015(34):121. (in Chinese) 
[6] WEN W, CHEN W, REN Q Q, et al. A highly sensitive nitric oxide biosensor based on hemoglobin-chitosan/graphene-hexadecyltrimethylammonium bromide nanomatrix[J]. Sens Actuators B Chem, 2012, 166-167:444-450. 
[7] 张晶晶, 康天放, 刘锦华, 等. 纳米金信号探针/石墨烯修饰免疫传感器检测微囊藻毒素[J]. 分析测试学报, 2017, 36(9):1075-1080. 
ZHANG J J, KANG T F, LIU J H, et al. Determination of microcystins using a graphene modified immunosensor based on Au nanoparticles signal probe[J]. Journal of Instrumental Analysis, 2017, 36(9):1075-1080. (in Chinese) 
[8] 朱作艺. 新型功能化碳纳米管修饰电极的制备及其在药物分析中的应用[D]. 杭州:浙江大学, 2014. 
ZHU Z Y. A dissertation submitted to Zhejiang university for the degree of doctor of philosophy[D]. Hangzhou:Zhejiang University, 2014. (in Chinese) 
[9] 杨素玲. 碳纳米管复合薄膜修饰电极的构筑及其在药物分析中的应用[D]. 郑州:郑州大学, 2012. 
YANG S L. Construction of carbon nanotubes composite film modified electrode and its application in pharmaceutical analysis[D]. Zhengzhou:Zhengzhou University, 2012. (in Chinese) 
[10] MALHOTRA R, PATEL V, VAQUÉ J P, et al. Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification[J]. Anal Chem, 2010, 82(8):3118-3123. 
[11] MIAO P, HAN K, TANG Y G, et al. Recent advances in carbon nanodots:Synthesis, properties and biomedical applications[J]. Nanoscale, 2015, 7(5):1586-1595. 
[12] FAN Z T, LI S H, YUAN F L, et al. Fluorescent graphene quantum dots for biosensing and bioimaging[J]. RSC Adv, 2015, 5(25):19773-19789. 
[13] HIMAJA A L, KARTHIK P S, SINGH S P. Carbon dots:The newest member of the carbon nanomaterials family[J]. Chem Rec, 2015, 15(3):595-615. 
[14] SHEN J H, ZHU Y H, YANG X L, et al. Graphene quantum dots:Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices[J]. Chem Commun, 2012, 48(31):3686-3699. 
[15] LI L L, WU G H, YANG G H, et al. Focusing on luminescent graphene quantum dots:Current status and future perspectives[J]. Nanoscale, 2013, 5(10):4015-4039. 
[16] 刘娜, 武爱波. 真菌毒素快速检测技术研究进展[J]. 食品安全质量检测学报, 2014, 5(7):1965-1970. 
LIU N, WU A B. Methodological advances for rapid detection of mycotoxins[J]. Journal of Food Safety and Quality, 2014, 5(7):1965-1970. (in Chinese) 
[17] 王瑞鑫, 张微, 李书国. 免疫传感器在粮油中真菌毒素快速检测的应用研究进展[J]. 粮油食品科技, 2015, 23(4):83-87. 
WANG R X, ZHANG W, LI S G. Research progress on application of immunosensor in determination of mycotoxins in cereals and oils[J]. Science and Technology of Cereals, Oils and Foods, 2015, 23(4):83-87. (in Chinese) 
[18] 张思思, 陆继伟, 王少敏, 等. 国内外真菌毒素检测方法研究现状及进展[J]. 食品安全质量检测学报, 2016, 7(7):2575-2586. 
ZHANG S S, LU J W, WANG S M, et al. Current status and advances of domestic and international determination methods of mycotoxins[J]. Journal of Food Safety and Quality, 2016, 7(7):2575-2586. (in Chinese) 
[19] VIDAL J C, BONEL L, EZQUERRA A, et al. Electrochemical affinity biosensors for detection of mycotoxins:A review[J]. Biosens Bioelectron, 2013, 49:146-158. 
[20] 周琳婷,李在均,方银军.石墨烯/导电高分子/离子液体修饰的黄曲霉毒素B1免疫传感器的制备及应用[J].分析化学,2012,40(11):1635-1641. 
ZHOU L T,LI Z J,FANG Y J. Preparation and application of graphene/conductive polymer/ionic liquid immunosensor for determination of aflatoxin B1[J]. Chinese Journal of Analytical Chemistry, 2012, 40(11):1635-1641. (in Chinese) 
[21] 干宁, 谢东华, 李榕生, 等. 小麦粉中黄曲霉毒素B1现场检测用纳米修饰传感器[J]. 中国粮油学报, 2009, 24(12):124-128. 
GAN N, XIE D H, LI R S, et al. A novel screen print amperomatric immunosensor to determine aflatoxin B1 in flour based on antibody coated nano gold particles modified electrode[J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(12):124-128. (in Chinese) 
[22] ZHANG X, LI C R, WANG W C, et al. A novel electrochemical immunosensor for highly sensitive detection of aflatoxin B1 in corn using single-walled carbon nanotubes/chitosan[J]. Food Chem, 2016, 192:197-202. 
[23] 张弦, 杨弦弦, 卿颖, 等. 一种用于检测赭曲霉毒素A的新型电化学免疫传感器的构建及表征分析[J]. 国际检验医学杂志, 2015, 36(20):2950-2952. 
ZHANG X, YANG X X, QING Y, et al. Development and characterization analysis of a new type of electrochemical immunosensor for the detection of ochratoxin A[J]. International Journal of Laboratory Medicine, 2015, 36(20):2950-2952. (in Chinese) 
[24] 张弦. 基于单壁碳纳米管/壳聚糖检测赭曲霉毒素A的电化学免疫传感器的构建[D]. 重庆:重庆医科大学, 2015. 
ZHANG X. An electrochemical immunoseneor for OTA detection using single-walled carbon nanotubes/chitosan[D]. Chongqing:Chongqing Medical University, 2015. (in Chinese) 
[25] YANG X X, ZHOU X P, ZHANG X, et al. A highly sensitive electrochemical immunosensor for fumonisin B1 detection in corn using single-walled carbon nanotubes/chitosan[J]. Electroanalysis, 2015, 27(11):2679-2687. 
[26] 杨弦弦. 基于单壁碳纳米管/壳聚糖检测伏马毒素B1的高效电化学传感器的研究[D]. 重庆:重庆医科大学, 2016. 
YANG X X. A highly sensitive electrochemical immunosensor for fumonisin B1 detection in corn using single-walled carbon nanotubes/chitosan[D]. Chongqing:Chongqing Medical University, 2016. (in Chinese) 
[27] MAJDINASAB M, YAQUB M, RAHIM A, et al. An overview on recent progress in electrochemical biosensors for antimicrobial drug residues in animal-derived food[J]. Sensors, 2017, 17(9):E1947. 
[28] 韩志钟, 吴月婷, 周莹, 等. 青霉素酶-氧化苏木精修饰Au/ZnO/石墨烯基青霉素电化学传感器的研制[J]. 分析化学, 2016, 44(3):377-384. 
HAN Z Z, WU Y T, ZHOU Y, et al. A low detection limit penicillin electrochemical biosensor based on penicillinase-hematein Au/ZnO/single graphene nanosheets[J]. Chinese Journal of Analytical Chemistry, 2016, 44(3):377-384. (in Chinese) 
[29] 阙小华. 基于竞争型免疫电化学生物传感器对抗生素残留检测方法探究[D]. 福州:福州大学, 2014. 
QUE X H. Competitive immune-based electrochemical immunosensor for detection of antibotics residues[D]. Fuzhou:Fuzhou University, 2014. (in Chinese) 
[30] MORAES F C, SILVA T A, CESARINO I, et al. Antibiotic detection in urine using electrochemical sensors based on vertically aligned carbon nanotubes[J]. Electroanalysis, 2014, 25(9):2092-2099. 
[31] BOROWIEC J, WANG R, ZHU L H, et al. Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol[J]. Electrochim Acta, 2013, 99:138-144. 
[32] WANG H W, YAO S, LIU Y Q, et al. Molecularly imprinted electrochemical sensor based on Au nanoparticles in carboxylated multi-walled carbon nanotubes for sensitive determination of olaquindox in food and feedstuffs[J]. Biosen Bioele, 2017, 87:417-421. 
[33] XU T C, ZHANG L, YANG J C, et al. Development of electrochemical method for the determination of olaquindox using multi-walled carbon nanotubes modified glassy carbon electrode[J]. Talanta, 2013, 109:185-190. 
[34] 戴炳业, 唐清华, 胡燕, 等. 电化学生物传感器在农药残留检测中的应用研究进展[J]. 粮油食品科技, 2014, 22(4):66-71. 
DAI B Y, TANG Q H, HU Y, et al. Research progress in application of electrochemical biosensor in determination of pesticide residues[J]. Science and Technology of Cereals, Oils and Foods, 2014, 22(4):66-71. (in Chinese) 
[35] ARDUINI F, CINTI S, SCOGNAMIGLIO V, et al. Nanomaterials in electrochemical biosensors for pesticide detection:Advances and challenges in food analysis[J]. Microchim Acta, 2016, 183(7):2063-2083. 
[36] 曾成柱, 刘卫红. 电化学免疫传感器在食品安全检测中的应用研究[J]. 电子技术与软件工程, 2013(13):123-124. 
ZENG C Z, LIU W H. Application of electrochemical immunosensor in food safety detection[J]. Electronic Technology & Software Engineering, 2013(13):123-124. (in Chinese) 
[37] 朱赫, 纪明山. 农药残留快速检测生物传感器研究进展[J]. 沈阳农业大学学报:社会科学版, 2013, 15(2):129-133. 
ZHU H, JI M S. Research progress of biosensors for rapid detection of pesticide residues[J]. Journal of Shenyang Agricultural University:Social Sciences Edition, 2013, 15(2):129-133. (in Chinese) 
[38] 姚学鹏, 刘绍琴. 生物传感器用于农药残留检测的研究进展:现状, 挑战及未来展望[J]. 食品安全质量检测学报, 2013, 4(1):54-60. 
YAO X P, LIU S Q. Biosensors for detection of pesticide residues:Current status, challenges and future perspectives[J]. Journal of Food Safety and Quality, 2013, 4(1):54-60. (in Chinese) 
[39] MEHTA J, BHARDWAJ N, BHARDWAJ S K, et al. Graphene quantum dot modified screen printed immunosensor for the determination of parathion[J]. Anal Biochem, 2017, 523:1-9. 
[40] LIU G Z, SONG D D, CHEN F J. Towards the fabrication of a label-free amperometric immunosensor using SWNTs for direct detection of paraoxon[J]. Talanta, 2013, 104:103-108. 
[41] BELKHAMSSA N, JUSTINO C I L, SANTOS P S, et al. Label-free disposable immunosensor for detection of atrazine[J]. Talanta, 2016, 146:430-434. 
[42] DUDAK F C, BOYACI I H. Enumeration of immunomagnetically captured Escherichia coli in water samples using quantum dot-labeled antibodies[J]. J Rapid Methods Autom Microbiol, 2008, 16(2):122-131. 
[43] HU Y H, WANG C C, BAI B, et al. Detection of Staphylococcus aureus using quantum dots as fluorescence labels[J]. Int J Agric Biol Eng, 2014, 7(1):77-83. 
[44] KIM G, PARK S B, MOON J H, et al. Detection of pathogenic Salmonella with nanobiosensors[J]. Anal Methods, 2013, 5(20):5717-5723. 
[45] WEN C Y, HU J, ZHANG Z L, et al. One-step sensitive detection of Salmonella typhimurium by coupling magnetic capture and fluorescence identification with functional nanospheres[J]. Anal Chem, 2013, 85(2):1223-1230. 
[46] FARKA Z, JURÍK T, KOVÁR D, et al. Nanoparticle-based immunochemical biosensors and assays:Recent advances and challenges[J]. Chem Rev, 2017, 117(15):9973-10042. 
[47] 黄娇玲,谢芝勋,罗思思,等.基于纳米材料的电化学免疫传感器检测H5N1亚型禽流感病毒的研究[J].畜牧兽医学报,2013,44(6):911-918. 
HUANG J L, XIE Z X, LUO S S, et al. A electrochemical immunosensor detection of avian influenza virus (H5N1) based on nano materials[J].Acta Veterinaria et Zootechnica Sinica, 2013,44(6):911-918.(in Chinese) 
[48] ZHANG S P, ZANG L L, ZHANG X Z, et al. Signal-on electrochemiluminescent immunosensor based on poly (Amidoamine) dendrimer functionalized carbon nanodots amplification for ultrasensitive detection of α-fetoprotein[J]. Electrochim Acta, 2016, 196:67-74. 
[49] AYDIN E B, SEZGINTVRK M K. A sensitive and disposable electrochemical immunosensor for detection of SOX2, a biomarker of cancer[J]. Talanta, 2017, 172:162-170. 
[50] TUTEJA S K, CHEN R, KUKKAR M, et al. A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs)[J]. Biosen Bioele, 2016, 86:548-556. 
[51] GÜNDOGDU A, AYDIN E B, SEZGINTVRK M K. A novel electrochemical immunosensor based on ITO modified by carboxyl-ended silane agent for ultrasensitive detection of MAGE-1 in human serum[J]. Anal Biochem, 2017, 537:84-92. 
[52] AFKHAMI A, HASHEMI P, BAGHERI H, et al. Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite[J]. Biosens Bioelectron, 2017, 93:124-131. 
[53] XIA Y F, GAO P Y, YANG B, et al. Immunoassay for SKOV-3 human ovarian carcinoma cells using a graphene oxide-modified electrode[J]. Microchim Acta, 2012, 179(3-4):201-207. 
[54] CHEN L N, LUO Y Q, LIU T, et al. Label-free electrochemical immunoassay of Bcl-2 protein expression on tumor cells[J]. Talanta, 2015, 132:479-485. 
[55] LIU J Y, QIN Y N, LI D, et al. Highly sensitive and selective detection of cancer cell with a label-free electrochemical cytosensor[J]. Biosens Bioelectron, 2013, 41:436-441.  |